非常易于使用,PC上的GUI软件可直接通过LAN、USB或GPIB接口对设备进行操作
信号输入范围:5MHz至50GHz/64GHz
极低的仪器本底噪声(<-190dBc/Hz)
偏移范围:0.01Hz至100MHz
标配互相关测试功能
极快的相位噪声测量时间:10kHz至100MHz频偏时每次互相关次数小于0.004秒
灵活的内外部参考
3个可调谐电压源(-5~+22V)
内置2个直流电压源(0~15V,每个600mA)
10MHz外参考输入
外触发输入
紧凑、轻便、易携带:10kg
ONETEST 欢迎您
非常易于使用,PC上的GUI软件可直接通过LAN、USB或GPIB接口对设备进行操作
信号输入范围:5MHz至50GHz/64GHz
极低的仪器本底噪声(<-190dBc/Hz)
偏移范围:0.01Hz至100MHz
标配互相关测试功能
极快的相位噪声测量时间:10kHz至100MHz频偏时每次互相关次数小于0.004秒
灵活的内外部参考
3个可调谐电压源(-5~+22V)
内置2个直流电压源(0~15V,每个600mA)
10MHz外参考输入
外触发输入
紧凑、轻便、易携带:10kg
APPH50G和APPH64G是APPH系列中全新上市的高性能相位噪声分析仪和VCO测试仪,其两个不同型号的频率范围分别覆盖了从5MHz到50或64GHz。它的本底噪声低至-190dBc/Hz并提供了一系列相位噪声分析仪必不可少的分析和测量功能,用于评估信号源(晶体振荡器、VCO、发射器、锁相环、频率合成器等,范围从 VHF 到微波频率),以及有源和无源非自振设备,如放大器或分频器等。这些功能包括相位噪声和加性相位噪声、幅度噪声、脉冲、抖动和艾伦偏差、瞬态分析、VCO 表征和频谱监测。
APPH系列标配 FPGA 互相关运算频谱引擎的混合信号系统架构可实现非常高速的信号处理和极低相位噪声测试灵敏度。
APPH系列同时内置可编程电源和低噪声调谐电压使该装置极其灵活且易于使用。
APPH50/64G相位噪声分析仪和VCO测试仪—输入高达64GHz
产品型号:
主机型号 | 频率输入范围(内部参考) | 频率输入范围(外部参考) |
APPH50G | 5MHz ~ 50GHz | 5MHz ~ 22GHz |
APPH64G | 5MHz ~ 64GHz | 5MHz ~ 22GHz |
主要特征:
APPH50G和APPH64G是款一体式紧凑型相位噪声测量系统,具有丰富的功能,可在0.01 Hz至100 MHz的偏移范围内实现低至-190 dBc/Hz的测量。
通过提供内部和外部参考选项,可以增加系统的灵活性和动态范围。内部基准可以提供极快的测量设置和高速的测量,而外部基准可以改善系统的本底噪声性能。
可编程的低噪声电源和偏置调谐电压端口可用于为DUT供电,而无需使用外部电源。
非常易于使用,PC上的GUI软件可直接通过LAN、USB或GPIB接口对设备进行操作
信号输入范围:5MHz至50GHz/64GHz
极低的仪器本底噪声(<-190dBc/Hz)
偏移范围:0.01Hz至100MHz
标配互相关测试功能
极快的相位噪声测量时间:10kHz至100MHz频偏时每次互相关次数小于0.004秒
灵活的内外部参考
3个可调谐电压源(-5~+22V)
内置2个直流电压源(0~15V,每个600mA)
10MHz外参考输入
外触发输入
紧凑、轻便、易携带:10kg
相位噪声灵敏度:标准和低噪声(选件LN)内部参考(1次互相关)
相位噪声灵敏度:标准和低噪声(选件LN)内部参考(100次互相关)
仪器GUI界面
主要测量功能:
相位噪声测量
相位噪声、剩余相位噪声、附加相位噪声
连续波、脉冲(低至50ns脉宽)、突发测试模式
高漂移或慢速调制
内参考或外参考测试
幅度噪声测量
相位噪声
连续波和脉冲测试模式
高漂移或慢速调制
瞬态测量
频率对时间(跳频)
相位对时间
幅度对时间
短期和长期频率稳定度/艾伦方差测量
1s至10天
压控振荡器(VCO)特性测量
调谐、调谐灵敏度、推压,功率,电流,谐波和相位噪声
基带噪声分析(1Hz~100MHz)
频谱分析仪(5MHz~64GHz)
主要技术指标:
频率范围 | 1MHz至50GHz或64GHz |
偏移范围 | 0.01Hz至100MHz |
输入功率范围 | -20dBm至+20dBm |
SSB相噪灵敏度 | 1次互相关后 |
100MHz@100kHz | -178dBc/Hz |
1GHz@100kHz | -170dBc/Hz |
10GHz@100kHz | -155dBc/Hz |
仪器本底噪声(@100MHz) | -190dBc/Hz@10kHz |
相噪测试速度 | <0.004秒/互相关(偏移范围:10kHz至100MHz) |
测量功能 | 相位噪声(含附加,CW,脉冲或突发模式); 幅度噪声(CW和脉冲); 基带噪声; 频率/功率/相位瞬态; VCO测试; 艾伦偏差(时间稳定性); 抖动; 频率计数器; 频谱分析 |
尺寸(W x L x H),重量 | 467.5 x 342 x 154 mm [18.4 x 13.5 x 6.1 in], 10 kg |
主要订货信息:
主机型号 | 描述 |
APPH50G | 5MHz~50GHz信号源分析仪/相位噪声分析仪主机 |
APPH64G | 5MHz~64GHz信号源分析仪/相位噪声分析仪主机 |
选件 | |
Option LN | 极低噪声内部参考源(HW) |
Option PULSE | 脉冲信号相噪测量(SW) |
Option NPS | 极窄脉冲信号测量(脉宽低至50ns)(SW) |
Option BURST | 突发模式信号相噪测量(SW) |
Option AM | 幅度噪声测量(SW) |
Option APN | 附加相位噪声测量(SW) |
Option TRAN | 瞬态信号分析(SW) |
Option TSTAB | 时间稳定度分析(SW) |
Option LO | 通过内部参考测量剩余相位噪声(HW) |
Option VCO | VCO特征分析(SW) |
Option SPEC | 频谱分析仪(SW) |
Option GPIB | GPIB接口 |
安铂克科技(上海)有限公司
400-621-8906
18721942080
marketing@anapico.net.cn
上海市闵行区田林路1036号科技绿洲三期16号楼303室
代理商:
1、北京嘉兆华明电子科技有限公司
北京地区:
地址:北京市昌平区科星西路霍营地铁口美唐综合楼
电话:158103546690
天津地区:
电话:15600543168
西安地区:
电话:18629417610
成都地区:
电话:13810999969
深圳地区:
电话:18515003116
沈阳地区:
电话:13889871649
武汉地区:
电话:13241040168
2、燊容电子科技(上海)有限公司
上海地区:
地址:上海市宝山区长江南路180号长江软件园C652
电话:15000372199
苏州地区:
地址:苏州吴中区金枫路8号招商花园坊1106号
电话:18621752540
3、南京道尔斯特电气有限公司
南京地区:
地址:南京市秦淮区中山东路443号普华大厦4层
电话:13951666846
0条提问
X
提问
X
回答
发表口碑
应对高速芯片从相位噪声到时间抖动的挑战
AnaPico公司的APPH系列相噪分析仪以-190dBc/Hz的本底噪声和小于5fs本底抖动而具有极高的灵敏度,能够以高于时域抖动的灵敏度测量频域中的相位噪声并及其便利的转换为对应的抖动数值。
抖动(Jitter):反映的是数字信号偏离其理想位置的时间偏差。高频数字信号的bit周期都非常短,一般在几百ps甚至几十ps,很小的抖动都会造成信号采样位置电平的变化,所以高频数字信号对于抖动都有严格的要求。
实际信号可能具有较高复杂性,比如既有随机抖动成分(RJ),也有不同频率的确定性抖动成分(DJ)。确定性抖动可能由于码间干扰或一些周期性干扰引起,而随机抖动很大一部分来源于信号上的噪声。一般我们把数字信号超过阈值的状态判决为“1”,把低于阈值的状态判决为“0”,由于信号的上升沿不是无限陡的,所以垂直的幅度噪声就会造成信号过阈值点时刻的左右变化,这就是由于噪声造成信号抖动的原因。
要进行信号抖动的分析,最常用的工具是宽带示波器配合上响应的抖动分析软件。示波器里的抖动分析软件可以方便地对抖动的大小和各种成分进行分解,但是,现在很多高速芯片对时钟的抖动要求都在1ps以下甚至fs级。这就需要借助于其它的测量方法,比如相位噪声(phase noise)的测量方法。
相位噪声:在频域上,数据偏移量用相位噪声来定义。对于频率为f0的时钟信号而言,如果信号上不含抖动,则信号的所有功率应集中在频率点f0处,由于任何信号都存在抖动,这些抖动有些是随机的,有些是确定的,分布于相当广的频带上,因此抖动的出现将使信号功率被扩展到这些频带上。信号的相位噪声,就是信号在某一特定频率处的功率分量,将这些分量连接成的曲线就是相位噪声曲线。相位噪声通常定义为在某一给定偏移处的dBc/Hz值,其中dBc是以dB为单位的该功率处功率与总功率的比值。如一个振荡器在某一偏移频率处的相位噪声定义为在该频率处1Hz带宽内的信号功率与信号总功率的比值,即在fm频率处1Hz范围内的面积与整个噪声频率下的所有面积之比。
图1:信号相位噪声曲线图
从相位噪声曲线图1可知,绝大多数抖动都集中在频率f0附近,距离f0越远的频段,抖动能量越小。
以下面的例子为例,说明对时钟输入的要求:
RMS JPER(12kHz~20MHz):0.5ps
相位噪声(10~100kHz):-120dBc/Hz
通常用单边带相位噪声来描述振荡器的特性,如图2的相位噪声(dBc/Hz)与频率偏移fm的关系曲线所示,其中频率轴采用对数刻度。注意,实际的曲线由多个区域拟合而成,各区域的斜率为1/fx ,x=0对应于“白色”相位噪声区域(斜率=0dB/10倍),x=1对应于“闪烁”相位噪声区域(斜率=–20dB/10倍)还存在x=2、3、4的区域,这些区域依次出现,愈来愈接近载波频率。
图2:振荡器相位噪声(dBc/Hz)与频率偏移的关系
我们已经看到,振荡器通常用相位噪声来描述性能,但为了将相位噪声与ADC的性能关联起来,必须将相位噪声转换为抖动。为将该曲线与现代ADC应用关联起来,选择100MHz 的振荡器频率(采样频率)以便于讨论,典型曲线如图3所示。请注意,相位噪声曲线由多条线段拟合而成,各线段的端点由数据点定义。
图3:根据相位噪声计算抖动
计算等效rms抖动的第一步是获得目标频率范围(即曲线区域A)内的积分相位噪声功率。该曲线被分为多个独立区域(A1、A2、A3、A4),各区域由两个数据点定义。一般而言,假设振荡器与ADC输入端之间无滤波,则积分频率范围的上限应为采样频率的2倍,这近似于ADC采样时钟输入的带宽。
积分频率范围下限的选择也需要一定的斟酌。理论上,它应尽可能低,以便获得真实的rms抖动。但实际上,制造商一般不会给出偏移频率小于10Hz时的振荡器特性,不过这在计算中已经能够得出足够精度的结果。多数情况下,如果提供了100Hz时的特性,则选择100Hz作为积分频率下限是合理的。否则,可以使用1kHz或10kHz数据点。
还应考虑,“近载波”相位噪声会影响系统的频谱分辨率,而宽带噪声则会影响整体系统信噪比。最明智的方法或许是对各区域分别积分,并检查各区域的抖动贡献幅度。如果使用晶体振荡器,则低频贡献与宽带贡献相比,可能可以忽略不计。其它类型的振荡器在低频区域可能具有相当大的抖动贡献,必须确定其对整体系统频率分辨率的重要性。
各区域的积分产生个别功率比,然后将各功率比相加,并转换回dBc。一旦知道积分相位噪声功率,便可通过下式计算rms相位抖动(单位为弧度)
公式1
以上结果除以2πfO,便可将用弧度表示的抖动转换为用秒表示的抖动。
公式2
图4给出了一个计算示例,它假设仅存在宽带相位噪声。所选的–150dBc/Hz宽带相位噪声代表了良好信号发生器的特性,由此获得的抖动值可以代表实际情况。–150dBc/Hz的相位噪声(用比值表示)乘以积分带宽(200MHz),得到–67dBc的积分相位噪声。请注意,该乘法相当于把10log10[200MHz–0.01MHz]的量与相位噪声(dBc/Hz)相加。实际上,计算中可以丢弃0.01MHz的频率下限,因为它不会对最终结果产生重大影响。利用公式2可知, 总rms抖动约为1ps。
图4:假设仅存在宽带相位噪声的抖动计算示例
在实际测试中,抖动值的来源除了相位噪声还要包含信号杂散,因此实际换算时必须把所有因素考虑进去。AnaPico的APPH系列相位噪声分析仪可以进行绝对相位噪声测试时将这些因素综合考虑或单独考虑。
图6:APPH测试某AI芯片时钟的抖动(阴影部分为积分区间,用户可自由拖动)
结论:相位噪声和抖动是对同一种现象的两种不同的定量方式(描述)。抖动是一个时域概念,单位是ps或fs。相位噪声是频率域的概念,相位噪声是用偏移频率fm处1Hz带宽内的矩形的面积, 与整个功率谱曲线下包含的面积之比表示的,单位为-dBc/Hz。随着现代数字系统的时钟频率越来越高,对高速芯片对时钟的抖动要求都在1ps以下甚至fs级。示波器已经无法满足相关的测试要求,因此必须采用灵敏度更高的相位噪声分析仪。AnaPico公司的APPH系列相噪分析仪以-190dBc/Hz的本底噪声和小于5fs本底抖动而具有极高的灵敏度,能够以高于时域抖动的灵敏度测量频域中的相位噪声并及其便利的转换为对应的抖动数值。
© 2024 Onetest仪器资源库 All Rights Reserved 粤ICP备17028186号-2 粤公网安备44030902003758